12 research outputs found

    Assistive robotic device: evaluation of intelligent algorithms

    Full text link
    Assistive robotic devices can be used to help people with upper body disabilities gaining more autonomy in their daily life. Although basic motions such as positioning and orienting an assistive robot gripper in space allow performance of many tasks, it might be time consuming and tedious to perform more complex tasks. To overcome these difficulties, improvements can be implemented at different levels, such as mechanical design, control interfaces and intelligent control algorithms. In order to guide the design of solutions, it is important to assess the impact and potential of different innovations. This paper thus presents the evaluation of three intelligent algorithms aiming to improve the performance of the JACO robotic arm (Kinova Robotics). The evaluated algorithms are 'preset position', 'fluidity filter' and 'drinking mode'. The algorithm evaluation was performed with 14 motorized wheelchair's users and showed a statistically significant improvement of the robot's performance.Comment: 4 page

    Impact of the COVID-19 pandemic on older adults: rapid review

    Get PDF
    Background: The COVID-19 pandemic has drastically changed the lives of countless members of the general population. Older adults are known to experience loneliness, age discrimination, and excessive worry. It is therefore reasonable to anticipate that they would experience greater negative outcomes related to the COVID-19 pandemic given their increased isolation and risk for complications than younger adults. Objective: This study aims to synthesize the existing research on the impact of the COVID-19 pandemic, and associated isolation and protective measures, on older adults. The secondary objective is to investigate the impact of the COVID-19 pandemic, and associated isolation and protective measures, on older adults with Alzheimer disease and related dementias. Methods: A rapid review of the published literature was conducted on October 6, 2020, through a search of 6 online databases to synthesize results from published original studies regarding the impact of the COVID-19 pandemic on older adults. The Human Development Model conceptual framework–Disability Creation Process was used to describe and understand interactions between personal factors, environmental factors, and life habits. Methods and results are reported following the Preferred Reporting Items for Systematic Reviews and Meta-analyses Statement. Results: A total of 135 records were included from the initial search strategy of 13,452 individual studies. Of these, 113 (83.7%) studies were determined to be of level 4 according to the levels of evidence classification by the Centre for Evidence-Based Medicine. The presence of psychological symptoms, exacerbation of ageism, and physical deterioration of aged populations were reported in the included studies. Decreased social life and fewer in-person social interactions reported during the COVID-19 pandemic were occasionally associated with reduced quality of life and increased depression. Difficulties accessing services, sleep disturbances, and a reduction of physical activity were also noted. Conclusions: Our results highlight the need for adequate isolation and protective measures. Older adults represent a heterogeneous group, which could explain the contradictory results found in the literature. Individual, organizational, and institutional strategies should be established to ensure that older adults are able to maintain social contacts, preserve family ties, and maintain the ability to give or receive help during the current pandemic. Future studies should focus on specific consequences and needs of more at-risk older adults to ensure their inclusion, both in public health recommendations and considerations made by policy makers

    Origins and genetic legacy of prehistoric dogs

    Get PDF
    Dogs were the first domestic animal, but little is known about their population history and to what extent it was linked to humans. We sequenced 27 ancient dog genomes and found that all dogs share a common ancestry distinct from present-day wolves, with limited gene flow from wolves since domestication but substantial dog-to-wolf gene flow. By 11,000 years ago, at least five major ancestry lineages had diversified, demonstrating a deep genetic history of dogs during the Paleolithic. Coanalysis with human genomes reveals aspects of dog population history that mirror humans, including Levant-related ancestry in Africa and early agricultural Europe. Other aspects differ, including the impacts of steppe pastoralist expansions in West and East Eurasia and a near-complete turnover of Neolithic European dog ancestry

    Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe

    Get PDF
    Archaeological evidence indicates that pig domestication had begun by ~10,500 y before the present (BP) in the Near East, and mitochondrial DNA (mtDNA) suggests that pigs arrived in Europe alongside farmers ~8,500 y BP. A few thousand years after the introduction of Near Eastern pigs into Europe, however, their characteristic mtDNA signature disappeared and was replaced by haplotypes associated with European wild boars. This turnover could be accounted for by substantial gene flow from local Euro-pean wild boars, although it is also possible that European wild boars were domesticated independently without any genetic con-tribution from the Near East. To test these hypotheses, we obtained mtDNA sequences from 2,099 modern and ancient pig samples and 63 nuclear ancient genomes from Near Eastern and European pigs. Our analyses revealed that European domestic pigs dating from 7,100 to 6,000 y BP possessed both Near Eastern and European nuclear ancestry, while later pigs possessed no more than 4% Near Eastern ancestry, indicating that gene flow from European wild boars resulted in a near-complete disappearance of Near East ancestry. In addition, we demonstrate that a variant at a locus encoding black coat color likely originated in the Near East and persisted in European pigs. Altogether, our results indicate that while pigs were not independently domesticated in Europe, the vast majority of human-mediated selection over the past 5,000 y focused on the genomic fraction derived from the European wild boars, and not on the fraction that was selected by early Neolithic farmers over the first 2,500 y of the domestication process

    Palaeogenomic Evidence for the Long-Term Reproductive Isolation Between Wild and Domestic Cats

    No full text
    Domestic cats were derived from the Near Eastern wildcat (Felis lybica), after which they dispersed with people into Europe. As they did so, it is possible that they interbred with the indigenous population of European wildcats (Felis silvestris). Gene flow between incoming domestic animals and closely related indigenous wild species has been previously demonstrated in other taxa including pigs, sheep, goats, bees, chickens and cattle. In the case of cats, a lack of nuclear, genome-wide data, particularly from Near Eastern wildcats, has made this possibility difficult to either detect or quantify. To address these issues, we generated 75 ancient mitochondrial genomes, 14 ancient nuclear genomes and 31 modern nuclear genomes from European and Near Eastern wildcats. Our results demonstrate that despite cohabitating for at least 2,000 years on the European mainland and in Britain, most modern domestic cats possessed less than 10% of their ancestry from European wildcats, and ancient European wildcats possessed little to no ancestry from domestic cats. The antiquity and strength of this reproductive isolation between introduced domestic cats and local wildcats was likely the result of behavioural and ecological differences. Intriguingly, this long-lasting reproductive isolation is currently being eroded in parts of the species’ distribution as a result of anthropogenic activities

    Limited historical admixture between European wildcats and domestic cats

    Get PDF
    Domestic cats were derived from the Near Eastern wildcat (Felis lybica), after which they dispersed with people into Europe. As they did so, it is possible that they interbred with the indigenous population of European wildcats (Felis silvestris). Gene flow between incoming domestic animals and closely related indigenous wild species has been previously demonstrated in other taxa, including pigs, sheep, goats, bees, chickens, and cattle. In the case of cats, a lack of nuclear, genome-wide data, particularly from Near Eastern wildcats, has made it difficult to either detect or quantify this possibility. To address these issues, we generated 75 ancient mitochondrial genomes, 14 ancient nuclear genomes, and 31 modern nuclear genomes from European and Near Eastern wildcats. Our results demonstrate that despite cohabitating for at least 2,000 years on the European mainland and in Britain, most modern domestic cats possessed less than 10% of their ancestry from European wildcats, and ancient European wildcats possessed little to no ancestry from domestic cats. The antiquity and strength of this reproductive isolation between introduced domestic cats and local wildcats was likely the result of behavioral and ecological differences. Intriguingly, this long-lasting reproductive isolation is currently being eroded in parts of the species' distribution as a result of anthropogenic activities

    Specialized sledge dogs accompanied Inuit dispersal across the North American Arctic

    Get PDF
    Domestic dogs have been central to life in the North American Arctic for millennia. The ancestors of the Inuit were the first to introduce the widespread usage of dog sledge transportation technology to the Americas, but whether the Inuit adopted local Palaeo-Inuit dogs or introduced a new dog population to the region remains unknown. To test these hypotheses, we generated mitochondrial DNA and geometric morphometric data of skull and dental elements from a total of 922 North American Arctic dogs and wolves spanning over 4500 years. Our analyses revealed that dogs from Inuit sites dating from 2000 BP possess morphological and genetic signatures that distinguish them from earlier Palaeo-Inuit dogs, and identified a novel mitochondrial clade in eastern Siberia and Alaska. The genetic legacy of these Inuit dogs survives today in modern Arctic sledge dogs despite phenotypic differences between archaeological and modern Arctic dogs. Together, our data reveal that Inuit dogs deriv

    Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe

    Get PDF
    Archaeological evidence indicates that pig domestication had begun by ∼10,500 y before the present (BP) in the Near East, and mitochondrial DNA (mtDNA) suggests that pigs arrived in Europe alongside farmers ∼8,500 y BP. A few thousand years after the introduction of Near Eastern pigs into Europe, however, their characteristic mtDNA signature disappeared and was replaced by haplotypes associated with European wild boars. This turnover could be accounted for by substantial gene flow from local European wild boars, although it is also possible that European wild boars were domesticated independently without any genetic contribution from the Near East. To test these hypotheses, we obtained mtDNA sequences from 2,099 modern and ancient pig samples and 63 nuclear ancient genomes from Near Eastern and European pigs. Our analyses revealed that European domestic pigs dating from 7,100 to 6,000 y BP possessed both Near Eastern and European nuclear ancestry, while later pigs possessed no more than 4% Near Eastern ancestry, indicating that gene flow from European wild boars resulted in a near-complete disappearance of Near East ancestry. In addition, we demonstrate that a variant at a locus encoding black coat color likely originated in the Near East and persisted in European pigs. Altogether, our results indicate that while pigs were not independently domesticated in Europe, the vast majority of human-mediated selection over the past 5,000 y focused on the genomic fraction derived from the European wild boars, and not on the fraction that was selected by early Neolithic farmers over the first 2,500 y of the domestication process

    Erratum: Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe

    No full text
    The authors note that the affiliation for Alexandros Triantafyllidis and Panoraia Alexandri should be listed as Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; and that the affiliation for Rose-Marie Arbogast should be listed as CNRS UMR 7044, Maison interuniversitaire des sciences de l'Homme, F-67083 Strasbourg Cedex, France. The corrected author and affiliation lines appear below. The online version has been corrected.</p
    corecore